- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Thomas, Alec_G_R (3)
-
Bulanov, Stepan_S (2)
-
Seipt, Daniel (2)
-
Sikorski, Philipp (1)
-
Zepf, Matt (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract In this article we investigate novel signatures of radiation reaction via the angular deflection of an electron beam colliding at 90 degrees with an intense laser pulse. Due to the radiation reaction effect, the electrons can be deflected towards the beam axis for plane wave backgrounds, which is not possible in the absence of radiation reaction effects. The magnitude and size of the deflection angle can be controlled by tailoring the laser pulse shapes. The effect is first derived analytically using the Landau–Lifshitz equation, which allows to determine the important scaling behavior with laser intensity and particle energy. We then move on to full scale 3D Monte Carlo simulations to verify the effect is observable with present day laser technology. We investigate the opportunities for an indirect observation of laser depletion in such side scattering scenarios.more » « less
-
Thomas, Alec_G_R; Bulanov, Stepan_S (, Physics of Plasmas)
-
Seipt, Daniel; Thomas, Alec_G_R (, Physics of Plasmas)The investigation of spin and polarization effects in ultra-high intensity laser–plasma and laser–beam interactions has become an emergent topic in high-field science recently. In this paper, we derive a relativistic kinetic description of spin-polarized plasmas, where quantum-electrodynamics effects are taken into account via Boltzmann-type collision operators under the local constant field approximation. The emergence of anomalous precession is derived from one-loop self-energy contributions in a strong background field. We are interested, in particular, in the interplay between radiation reaction effects and the spin polarization of the radiating particles. For this, we derive equations for spin-polarized quantum radiation reaction from moments of the spin-polarized kinetic equations. By comparing with the classical theory, we identify and discuss the spin-dependent radiation reaction terms and radiative contributions to spin dynamics.more » « less
An official website of the United States government
